Enantioselective blockade of T-type Ca2+ current in adult rat sensory neurons by a steroid that lacks gamma-aminobutyric acid-modulatory activity.
نویسندگان
چکیده
A number of steroids seem to have anesthetic effects resulting primarily from their ability to potentiate currents gated by gamma-aminobutyric acidA (GABAA) receptor activation. One such compound is (3alpha,5alpha, 17beta)-3-hydroxyandrostane-17-carbonitrile [(+)-ACN]. We were interested in whether carbonitrile substitution at other ring positions might result in other pharmacological consequences. Here we examine effects of (3beta,5alpha, 17beta)-17-hydroxyestrane-3-carbonitrile [(+)-ECN] on GABAA receptors and Ca2+ channels. In contrast to (+)-ACN, (+)-ECN does not potentiate GABAA-receptor activated currents, nor does it directly gate GABAA-receptor mediated currents. However, both steroids produce an enantioselective reduction of T-type current. (+)-ECN blocked T current with an IC50 value of 0.3 microM with a maximal block of 41%. (+)-ACN produced a partial block of T current (44% maximal block) with an IC50 value of 0.4 microM. Block of T current showed mild use- and voltage-dependence. The (-)-ECN enantiomer was about 33 times less potent than (+)-ECN, with an IC50 value of 10 microM and an amount of maximal block comparable to (+)-ECN. (+)-ECN was less effective at blocking high-voltage-activated Ca2+ current in DRG neurons (IC50 value of 9. 3 microM with maximal block of about 27%) and hippocampal neurons. (+)-ECN (10 microM) had minimal effects on voltage-gated sodium and potassium currents in rat chromaffin cells. The results identify a steroid with no effects on GABAA receptors that produces a partial inhibition of T-type Ca2+ current with reasonably high affinity and selectivity. Further study of steroid actions on T currents may lead to even more selective and potent agents.
منابع مشابه
P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملLong-range oscillatory Ca2+ waves in rat spinal dorsal horn.
Synchronous activity of large populations of neurons shapes neuronal networks during development. However, re-emergence of such activity at later stages of development could severely disrupt the orderly processing of sensory information, e.g. in the spinal dorsal horn. We used Ca2+ imaging in spinal cord slices of neonatal and young rats to assess under which conditions synchronous activity occ...
متن کاملEstradiol attenuates the K+-induced increase in extracellular GABA in rat striatum.
Estradiol acts rapidly and directly to inhibit L-type Ca2+ current in medium spiny neurons from striatum. Since medium spiny neurons contain gamma-aminobutyric acid (GABA), we hypothesized that estradiol inhibition of Ca2+ channel current in the cell body would result in decreased GABA release. In this study, we examined the effect of estradiol on the concentration of GABA, taurine, and glutama...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 54 5 شماره
صفحات -
تاریخ انتشار 1998